Imputation by probabilistic principal components analysis
impute.pca_prob.Rd
Apply imputation to the data by probabilistic principal components analysis (Stacklies et al. 2007) .
Arguments
- dataSet
A data frame containing the data signals.
- nPcs
An integer specifying the number of principal components to calculate. The default is set to the minimum between the number of samples and the number of proteins.
- maxIterations
An integer (default = 1000) specifying the maximum number of allowed iterations.
- seed
An integer (default = 362436069) specifying the seed used for the random number generator for reproducibility.
References
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007). “pcaMethods–A Bioconductor Package Providing PCA Methods for Incomplete Data.” Bioinformatics, 23(9), 1164–1167. doi:10.1093/bioinformatics/btm069 .