Perform a partial least squares discriminant analysis on the data.
Arguments
- dataSet
The 2d data set of data.
- method
A character string (default = "kernelpls") specifying the multivariate regression method to be used:
"kernelpls": Kernel algorithm (Dayal and MacGregor 1997) .
"widekernelpls": Wide kernel algorithm (Rännar et al. 1994) .
"simpls": SIMPLS algorithm (de Jong 1993) .
"oscorespls": NIPALS algorithm (classical orthogonal scores algorithm) (Martens and Næs 1989) .
- ncomp
An integer specifying the number of components to include in the model. Defaults to min(n-1, p).
- center
A boolean (default = TRUE) indicating whether the variables should be shifted to be zero centered.
- scale
A boolean (default = FALSE) indicating whether the variables should be scaled to have unit variance before the analysis takes place.
Value
A list containing the following components:
- coefficients
An array of regression coefficients for
ncomp
components. The dimensions are c(nvar, npred,ncomp
), where nvar is the number of variables X (proteins) and npred is the number of predicted variables Y (conditions).- scores
A matrix of scores.
- vips
A matrix of variable importance in projection (VIP) scores.
- loadings
A matrix of loadings.
- loading.weights
A matrix of loading weights.
- Xvar
A vector with the amount of X-variance explained by each component.
- Xtotvar
Total variance in X.
- ncomp
The number of components.
- method
The method used to fit the model.
- center
Indicates whether centering was applied to the model.
- scale
The scaling used.
- model
The model frame.
References
Dayal BS, MacGregor JF (1997).
“Improved PLS Algorithms.”
Journal of Chemometrics, 11(1), 73–85.
doi:10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-\%23
.
de Jong S (1993).
“SIMPLS: An Alternative Approach to Partial Least Squares Regression.”
Chemometrics and Intelligent Laboratory Systems, 18(3), 251–263.
doi:10.1016/0169-7439(93)85002-X
.
Martens H, Næs T (1989).
Multivariate Calibration.
Chichester, Wiley, New York, USA.
ISBN 0471909793.
Rännar S, Lindgren F, Geladi P, Wold S (1994).
“A PLS Kernel Algorithm for Data Sets with Many Variables and Fewer Objects. Part 1: Theory and Algorithm.”
Journal of Chemometrics, 8(2), 111–125.
doi:10.1002/cem.1180080204
.