Apply imputation to the dataset by Bayesian linear regression (Rubin 1987; Schafer 1997; van Buuren and Groothuis-Oudshoorn 2011) .
Arguments
- dataSet
The 2d dataset of experimental values.
- reportImputing
A boolean (default = FALSE) specifying whether to provide a shadow data frame with imputed data labels, where 1 indicates the corresponding entries have been imputed, and 0 indicates otherwise. Alters the return structure.
- m
An integer (default = 5) specifying the number of multiple imputations.
- seed
An integer (default = 362436069) specifying the seed used for the random number generator for reproducibility.
Value
If
reportImputing = FALSE
, the function returns the imputed 2d dataframe.If
reportImputing = TRUE
, the function returns a list of the imputed 2d dataframe and a shadow matrix showing which proteins by replicate were imputed.
References
Rubin DB (1987).
Multiple Imputation for Nonresponse in Surveys.
John Wiley \& Sons, New York, NY, USA.
ISBN 9780471087052.
Schafer JL (1997).
Analysis of Incomplete Multivariate Data.
Chapman \& Hall/CRC, New York, NY, USA.
ISBN 9780412040610.
van Buuren S, Groothuis-Oudshoorn K (2011).
“mice: Multivariate Imputation by Chained Equations in R.”
Journal of Statistical Software, 45(3), 1–67.
doi:10.18637/jss.v045.i03
.