Imputation by probabilistic principal components analysis
Source:R/imputations.R
impute.pca_prob.Rd
Apply imputation to the dataset by probabilistic principal components analysis (Stacklies et al. 2007) .
Usage
impute.pca_prob(
dataSet,
reportImputing = FALSE,
nPcs = NULL,
maxIterations = 1000,
seed = 362436069
)
Arguments
- dataSet
The 2d dataset of experimental values.
- reportImputing
A boolean (default = FALSE) specifying whether to provide a shadow data frame with imputed data labels, where 1 indicates the corresponding entries have been imputed, and 0 indicates otherwise. Alters the return structure.
- nPcs
An integer specifying the number of principal components to calculate. The default is set to the minimum between the number of samples and the number of proteins.
- maxIterations
An integer (default = 1000) specifying the maximum number of allowed iterations.
- seed
An integer (default = 362436069) specifying the seed used for the random number generator for reproducibility.
Value
If
reportImputing = FALSE
, the function returns the imputed 2d dataframe.If
reportImputing = TRUE
, the function returns a list of the imputed 2d dataframe and a shadow matrix showing which proteins by replicate were imputed.
References
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007). “pcaMethods–A Bioconductor Package Providing PCA Methods for Incomplete Data.” Bioinformatics, 23(9), 1164–1167. doi:10.1093/bioinformatics/btm069 .