Skip to contents

Apply imputation to the dataset by probabilistic principal components analysis (Stacklies et al. 2007) .

Usage

impute.pca_prob(dataSet, nPcs = NULL, maxIterations = 1000, seed = 362436069)

Arguments

dataSet

The 2d dataset of experimental values.

nPcs

An integer specifying the number of principal components to calculate. The default is set to the minimum between the number of samples and the number of proteins.

maxIterations

An integer (default = 1000) specifying the maximum number of allowed iterations.

seed

An integer (default = 362436069) specifying the seed used for the random number generator for reproducibility.

Value

An imputed 2d dataframe.

References

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007). “pcaMethods–A Bioconductor Package Providing PCA Methods for Incomplete Data.” Bioinformatics, 23(9), 1164–1167. doi:10.1093/bioinformatics/btm069 .